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Figure 1: Our method generates an in-between motion sequence with a high leg lifting style (blue) between target frames
(orange). Given a target frame, a desired transition duration and the required style, the character can dynamically adjust
motions to reach the target with the desired style. Specifically, the character in the white box needs bigger steps to reach the
target within the specified duration, while the character in the orange box needs smaller steps to reduce the speed for the same
reason.

ABSTRACT
Styled online in-between motion generation has important applica-
tion scenarios in computer animation and games. Its core challenge
lies in the need to satisfy four critical requirements simultaneously:
generation speed, motion quality, style diversity, and synthesis con-
trollability. While the first two challenges demand a delicate balance
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between simple fast models and learning capacity for generation
quality, the latter two are rarely investigated together in existing
methods, which largely focus on either control without style or
uncontrolled stylized motions. To this end, we propose a Real-time
Stylized Motion Transition method (RSMT) to achieve all afore-
mentioned goals. Our method consists of two critical, independent
components: a general motion manifold model and a style motion
sampler. The former acts as a high-quality motion source and the lat-
ter synthesizes styledmotions on the fly under control signals. Since
both components can be trained separately on different datasets,
our method provides great flexibility, requires less data, and gen-
eralizes well when no/few samples are available for unseen styles.
Through exhaustive evaluation, our method proves to be fast, high-
quality, versatile, and controllable. The code and data are available
at https://github.com/yuyujunjun/RSMT-Realtime-Stylized-Motion-
Transition.
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1 INTRODUCTION
We investigate an under-exploredmotion generation problem: styled
online in-between motion synthesis. Rather than controlled style
variation, our research focuses on maintaining a specific style while
filling motions between keyframes, avoiding collapse to simple neu-
tral motion, and has important applications in computer animation
and games. It consists of two key elements that can potentially
contradict with one another. Online in-between motion synthesis
aims to quickly compute natural high-quality motions that satisfy
the given constraints e.g. specified by frames [Harvey and Pal 2018;
Harvey et al. 2020], while stylized motion generation focuses on
motions that are visually different but with the same semantics
(e.g. normal and zombie walking) [Dong et al. 2020; Yin et al. 2023].
Overall, the former attempts to find the optimal (in a broad sense)
motion while the latter explores the motion diversity.

Existing research mostly investigates the above two problems
separately [Mason et al. 2022, 2018; Oreshkin et al. 2022; Qin et al.
2022]. Given the initial and end frame(s), in-between motions can
be formulated into complex optimization problems [Wang et al.
2015]. If data is available, it can be solved by searching in struc-
tured data [Kovar et al. 2008; Min and Chai 2012; Shen et al. 2017],
or maximizing the likelihood or a posteriori [Li et al. 2013]. In
deep learning, it can also be formulated into a motion manifold
learning or control problem [Chen et al. 2020; Holden et al. 2016; Li
et al. 2021; Petrovich et al. 2021]. In parallel, motion style has also
been separately investigated. Motion can be stylized via optimiza-
tion [Hsu et al. 2005], or learning parametric or non-parametric
models on limited data [Brand and Hertzmann 2000; Wang et al.
2007]. More recently, deep learning has been employed to extract
and transfer the style features of motions [Du et al. 2019; Park et al.
2021; Wen et al. 2021].

Combining in-between and style motion needs to address several
challenges simultaneously: generation speed, motion quality, style
diversity, and synthesis controllability. The first two challenges
dictate that simple models need to be employed and strictly rule
out post-processing. Existing approaches are either too slow, rely
on post-processing [Aberman et al. 2020; Duan et al. 2021; Jang et al.
2022] or can only handle limited amount of data [Chai and Hodgins
2007]. Further, existing research rarely considers the latter two
challenges together, either focusing on control without style [Tang
et al. 2022] or uncontrolled style motions [Mason et al. 2022, 2018].

Enforcing control can easily break the intended style and vice versa.
Table 1 shows the high level differences between our method and
the literature.

Table 1: High level comparison between our method and
existing methods.

Speed Quality Style Controllability large dataset
Optimization × × ✓ ✓ n/a
Traditional in-between ✓ ✓ × ✓ ×
Traditional style ✓ ✓ ✓ × ×
Deep learning (in-between) ✓ ✓ × ✓ ✓
Deep learning (style) ✓ ✓ ✓ × ✓
Ours ✓ ✓ ✓ ✓ ✓

To this end, we propose a novel method, which can generate high-
quality styled in-between motions in real time, given the starting
frame, the end frame, the time duration, and a motion with the tar-
get style. Inspired by the work in motion manifold/representation
learning [Du et al. 2019; Ling et al. 2020] and conditional generation
in images/motion [Huang and Belongie 2017; Starke et al. 2021], our
key insight is to decouple the source of generation from the con-
trol of synthesis. Similar to representation learning, a good motion
source should provide high-quality motions with varying styles.
Furthermore, the extracted motion and style features should be
ready for controlled synthesis, as a downstream task. This observa-
tion naturally leads to two key components in our system: a general
motion manifold representation and a style motion sampler incor-
porating control. Moreover, such a design also allows the manifold
and the sampler to be trained under different settings, e.g. the man-
ifold trained on large unstyled/not-strongly-styled datasets widely
available, and the sampler trained on smaller/dedicated datasets
with desired styles, with little or no overlapping with the manifold
data. This is ideal because the manifold can be pre-trained and
shared, while the sampler is easily adaptable.

Our manifold model is an autoencoder that encodes motion tran-
sition randomness [Ling et al. 2020; Tang et al. 2022] and motion
phases [Starke et al. 2022]. The autoencoder encodes motions into a
latent space conforming to a Gaussian distribution, which together
with the extracted phase information jointly serve as a good source.
A motion sampler based on recurrent neural networks is then em-
ployed to sample from the source, with specified target frames, time
duration and style, avoiding generating only the most probable mo-
tions such as [Harvey et al. 2020; Tang et al. 2022]. We exhaustively
evaluate our method on 100STYLE dataset [Mason et al. 2022] and
compare it with the most recent baseline methods [Harvey et al.
2020; Tang et al. 2022] under multiple metrics regarding motion
quality, controllability, style diversity, etc. Our method proves to
be fast, high-quality, versatile, and controllable.

Our main contributions can be summarized as follows:

• We present a novel online framework for styled real-time
in-between motion generation without post-processing.

• We propose a new method to combine styles and controlla-
bility in motion generation.

• We propose a new model that has strong generalization
capacity in both motion control and stylization.

https://doi.org/10.1145/3588432.3591514
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2 RELATEDWORK
2.1 In-between motion generation.
In-between motion synthesis can be regarded as motion planning
[Arikan and Forsyth 2002; Beaudoin et al. 2008; Levine et al. 2012;
Safonova and Hodgins 2007; Wang and Komura 2011; Wang et al.
2013], which solves complex optimization problems with various
constraints. Data-driven methods are faster and produce more natu-
ral motions by searching in structured data, such as motion graphs
[Kovar et al. 2008; Min and Chai 2012; Shen et al. 2017], but there is a
trade-off between the diversity of animation and the space complex-
ity. Recently, deep neural networks [Holden et al. 2020] leverage
compressed data representations to reduce the space complexity.

Learning-based online in-between motion synthesizing can be
formulated as motion manifold learning problems [Chen et al. 2020;
He et al. 2022; Holden et al. 2016; Li et al. 2021; Petrovich et al.
2021; Rempe et al. 2021; Wang et al. 2019] with time-space con-
straints [Harvey and Pal 2018; Harvey et al. 2020]. Besides, explic-
itly modeling the low-level motion transition as a motion mani-
fold [Tang et al. 2022] improves the transition generalization for
unseen control. However, without style control explicitly, the char-
acter reaches the target by the most probable motion, which might
break the intended style.

Offline methods can be considered motion completion problems
[Hernandez et al. 2019; Kaufmann et al. 2020], which can be solved
by convolution neural networks or transformers [Duan et al. 2021;
Oreshkin et al. 2022; Qin et al. 2022]. Recent research employs
generative models, such as diffusion models [Tevet et al. 2022] or
generative adversarial networks [Li et al. 2022] to fill the missing
framewith the specific actions by user control. However, the models
give little attention to time efficiency, so it’s hard to employ them
for real-time applications.

2.2 Motion style transfer
One solution to motion style transfer models the style variations
between two motions [Hsu et al. 2005]. Some research employs
data-driven methods, such as Bayesian Networks [Ma et al. 2010]
or mixtures of autoregressive models [Xia et al. 2015]. Unuma et al.
[1995] and Yumer and Mitra [2016] extracted style features between
independent actions by transforming the motion into the frequency
domain, but they largely handle relatively small amounts of data.
Recent deep learning methods model the style directly. The style
can be represented as one-hot embedding [Smith et al. 2019], where
the style is stored as parameters of the neural network. However,
one-hot embedding representation cannot be generalized to unseen
styles. To solve this, Mason et al. [2018] proposed a residual block
to model the style. Further, recent methods [Aberman et al. 2020;
Jang et al. 2022] extract the style feature as the latent variable
explicitly, making zero-shot learning available. When the content
sequence is missing for in-between motion generation, the style
transfer problem can be transformed into a style-guided generation
problem. The most related work synthesizes motion sequences with
the style feature introduced by the FiLM block [Mason et al. 2022].
However, generating the stylized in-between sequence that satisfies
control signals is still an unsolved problem.

3 METHODOLOGY
A human motion with 𝑇 frames M = {s0∼𝑇 } can be represented as
a series of skeletal poses s𝑡 ∈ R𝑁×𝐷 , where 𝑁 is the joint number
and 𝐷 is the degrees of freedom per joint at time 𝑡 ∈ [0,𝑇 ]. An
often employed assumption on human motion is a linear dynamical
system [Li et al. 2002; Pavlovic et al. 2000]:

𝑠𝑡+1 = 𝑠𝑡 + 𝑓1 (ℎ𝑡+1, 𝑠𝑡 ) and ℎ𝑡+1 = 𝑓2 (ℎ𝑡 , 𝑠𝑡 ), (1)

where ℎ is a latent variable and governs the dynamics. When 𝑓1
and 𝑓2 are stochastic, we can model the joint probability of𝑀 and
𝐻 = {ℎ0∼𝑇 } as:

𝑃 (𝑀,𝐻 ) = 𝑃 (𝑠1∼𝑇−1, ℎ1∼𝑇 |𝑠𝑇 , 𝑠0, ℎ0, 𝑘)𝑃 (𝑠0)𝑃 (ℎ0)𝑃 (𝑠𝑇 )𝑃 (𝑘)

= 𝑃 (𝑠0)𝑃 (ℎ0)𝑃 (𝑠𝑇 )𝑃 (𝑘)∏
𝑃 (𝑠𝑡+1 |𝑠𝑇 , 𝑠0, ℎ0, ℎ𝑡+1, 𝑠𝑡 )𝑃 (ℎ𝑡+1 |𝑠𝑇 , 𝑠0, ℎ0, 𝑘, ℎ𝑡 , 𝑠𝑡 ), (2)

where 𝑠0, ℎ0 and 𝑠𝑇 can be seen as control variables for in-between
motion generation and 𝑘 is a summarizing style code. The motion
dynamics is governed by the last line in Eq. (2). Here we employℎ𝑡 =
{𝑧𝑡 , 𝑣𝑡

ℎ
, 𝑝𝑡 }, where 𝑧𝑡 is a latent variable to govern the stochasticity

of the transition of ℎ, 𝑣𝑡
ℎ
is the hip velocity and orientation, 𝑝𝑡 is

a phase-related feature. We omit 𝑠0 and ℎ0 for simplicity in the
rest of the paper. Learning can be conducted through maximizing
Eq. (2) which is decomposed into two parts: the motion manifold
𝑃 (𝑠𝑡+1 |𝑠𝑇 , ℎ𝑡+1, 𝑠𝑡 ) and the sampler 𝑃 (ℎ𝑡+1 |𝑠𝑇 , ℎ𝑡 , 𝑠𝑡 , 𝑘). We model
both by deep neural networks. In summary, the sampler samples the
stylized transition motion from the manifold by auto-regressively
predicting the phase, hip, and latent variable. Below, we introduce
their high-level design and refer the readers to the supplementary
material for network details.

3.1 The Motion Manifold
Learning the motion manifold requires specifying the model for
𝑃 (𝑠𝑡+1 |𝑠𝑇 , ℎ𝑡+1, 𝑠𝑡 ). First, instead of learning the next pose 𝑠𝑡+1 di-
rectly, we learn a pose change Δ𝑠𝑡+1 = 𝑠𝑡+1 − 𝑠𝑡 , as given a fixed
time interval, this is equivalent of learning a velocity profile which
captures the dynamics better [Martinez et al. 2017]. Next, we drop
𝑘 and 𝑠𝑇 from ℎ𝑡+1. This is because 𝑘 is a summarizing style code
and 𝑠𝑇 is the target state, while we aim to make the manifold
more focused on learning local natural motions with any style. So
𝑃 (𝑠𝑡+1 |𝑠𝑇 , ℎ𝑡+1, 𝑠𝑡 ) = 𝑃 (Δ𝑠𝑡+1 |𝑣𝑡+1

ℎ
, 𝑝𝑡+1, 𝑧𝑡+1, 𝑠𝑡 ). Directly learning

it is not possible as only Δ𝑠𝑡+1, 𝑣𝑡+1
ℎ

and 𝑠𝑡 are observable and 𝑝𝑡+1

and 𝑧𝑡+1 need to be learned as latent variables. Therefore, we pro-
pose to use an autoencoder to learn the mapping while regularizing
𝑝𝑡+1 and 𝑧𝑡+1.

The architecture of the autoencoder is shown in Fig. 2. The in-
put is two consecutive frames and the output is the pose change.
The encoder encodes the input into 𝑧 regularized by 𝑧 ∼ 𝑁 (0, 1)
to capture the transition stochasticity. The decoder recovers mo-
tions based on 𝑧, the style related phase features 𝑝𝑡+1, the current
frame 𝑠𝑡 , and the future hip velocity and orientation 𝑣𝑡+1

ℎ
. 𝑣𝑡+1

ℎ
is a

strong indicator of the next frame in terms of the general motion
trend [Tang et al. 2022], especially on the lower body where the
motion diversity is smaller compared with the upper body. How-
ever, 𝑣𝑡+1

ℎ
is insufficient to include style-related information, so we

use another phase-related feature 𝑝𝑡+1.
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Figure 2: During training, the encoder takes 𝑠𝑡 and 𝑠𝑡+1 and
generates the mean value ` and log variance 𝜎 of the Gauss-
ian distribution. Then the latent variable 𝑧 is calculated by
reparameterization. Next, the gating network takes the phase
sampled from the phase manifold and the latent variable 𝑧
to generate the blending coefficients for experts. Finally, the
blended expert takes the current frame 𝑠𝑡 , the future root
𝑣𝑡+1
ℎ

, and the latent vector 𝑧 to predict the pose change.
The phase feature in the latent space reveals well-behaved mo-

tion patterns [Starke et al. 2022]. For our problem, it is comple-
mentary to 𝑣𝑡+1

ℎ
in that it describes a continuous change of motion

in patterns, which is highly related to styles [Yumer and Mitra
2016]. Following [Starke et al. 2022], we train a periodic autoen-
coder to extract a multi-dimensional phase manifold. The resulting
phase vectors on this manifold are represented by a signed phase
shift 𝑆 , which when multiplied by 2𝜋 represents the angle of the
phase vector, and an amplitude 𝐴, representing the phase vector
magnitude:

𝑝2𝑖−1 = 𝐴𝑖 · 𝑠𝑖𝑛(2𝜋 · 𝑆𝑖 ), 𝑝2𝑖 = 𝐴𝑖 · 𝑐𝑜𝑠 (2𝜋 · 𝑆𝑖 ), (3)

where 𝑖 is the dimension index. After encoding, the decoder aims to
recover the velocity, which is designed to be generative and learns
𝑃 (Δ𝑠𝑡+1 |𝑣𝑡+1

ℎ
, 𝑝𝑡+1, 𝑧𝑡+1, 𝑠𝑡 ). 𝑧𝑡+1 is drawn from𝑁 (`, 𝜎). 𝑝𝑡+1 is sam-

pled from the phase manifold. Both are fed into a gating network
for a Conditional Mixtures of Experts (CMoEs), conditioned on the
current frame 𝑠𝑡 , the future hip feature 𝑣𝑡+1

ℎ
and 𝑧𝑡+1. The reason

to employ a CMoEs here is that the transition distribution itself is
multimodal [Holden et al. 2017; Wang et al. 2019] and this multi-
modality is further amplified with styles. A single network would
average the data. In the CMoEs, each expert is expected to learn one
mode and a combination of them can capture the multi-modality,
with their weighting computed from 𝑧𝑡+1 and 𝑝𝑡+1. Here 𝑧𝑡+1 and
𝑝𝑡+1 also play different roles. 𝑧𝑡+1 governs the stochastic state tran-
sition of the linear dynamical system (Eq. (1)) while we find 𝑝𝑡+1
is a good continuous representation that encodes motion styles.
This also means our motion manifold implicitly learns style-related
features which can be utilized later by the sampler.

3.1.1 Losses. We minimize 𝐿 = 𝐿𝑟𝑒𝑐 + 𝛽𝐿𝑘𝑙 + 𝐿𝑓 𝑜𝑜𝑡 where:

𝐿𝑟𝑒𝑐 =
1

𝐼𝑇𝑁𝐷

∑︁
| |𝑀𝑖 −𝑀′

𝑖 | |
2
2, (4)

𝐿𝑘𝑙 = −0.5 · (1 + 𝜎 − `2 − 𝑒𝜎 ), 𝐿𝑓 𝑜𝑜𝑡 =
1

𝐼𝑇𝑁𝑓

∑︁
| |𝑓 ′𝑣 𝛿 (𝑓𝑣) | |22,

where 𝐼 , 𝑇 , 𝑁 , 𝐷 , and 𝑁𝑓 are the number of data samples, the
motion length, the number of joints, the degrees of freedom per
joint, and the number of foot joints that contact on the ground.𝑀𝑖

and 𝑀′
𝑖
are the ground-truth and predicted motion. Overall, 𝐿𝑟𝑒𝑐

is a reconstruction loss. 𝐿𝑓 𝑜𝑜𝑡 penalizes foot sliding, where 𝑓 ′𝑣 is
the predicted foot velocity and 𝛿 (𝑓𝑣) ∈ [0, 1] is the probability of
ground-truth foot contact for each foot in each frame, which is
defined by:

𝛿 (𝑓𝑣) =


1, 𝑓𝑣 ≤ 0.5,
0, 𝑓𝑣 ≥ 1.0,
2𝑡3 − 3𝑡2 + 1, 𝑡 = 2(𝑓𝑣 − 0.5), 𝑓𝑣 ∈ (0.5, 1.0).

(5)

𝐿𝑘𝑙 is the KL-divergence between the 𝑧 distribution parameterized
by ` and𝜎 and𝑁 (0, 1), whichwe reparameterize following [Kingma
and Welling 2013]. 𝛽 is a hyper-parameter balancing between qual-
ity and generalization, which is set to 0.001 [Ling et al. 2020; Tang
et al. 2022]. Note we intentionally employ a relatively small 𝛽 to
ensure the motion quality in the manifold. Later experiments will
show that the generalization ability, which would be otherwise lost,
will be compensated by the sampler.

3.2 The Motion Sampler
After training, the manifold is captured by the decoder and ready
to be sampled. We learn the desired motions by learning the transi-
tion distribution 𝑃 (ℎ𝑡+1 |𝑠𝑇 , ℎ𝑡 , 𝑠𝑡 ). The sampler’s design is shown
in Fig. 3. The sampler takes as input the current frame 𝑠𝑡 , the
target frame 𝑠𝑇 , the current phase vector 𝑝𝑡 and the styled mo-
tion 𝑀𝑠 with the target style. Then it outputs the latent vector
ℎ𝑡+1 = {𝑝𝑡+1, 𝑧𝑡+1, 𝑣𝑡+1

ℎ
} which can then be fed into the manifold

motion to sample the next frame.
Specifically, we first extract a summarizing style code 𝑘 from

𝑀𝑠 by the style encoder based on convolutional neural networks.
𝑘 has a temporal dimension which we find is crucial in sampling,
where the style information for each frame is lost in some earlier
work [Aberman et al. 2020; Park et al. 2021]. Next, 𝑘 is combined
with the current frame 𝑠𝑡 in a style embedding after 𝑠𝑡 is pulled
through a state encoder. This embedding co-embeds a single frame
and a style code into a common space. In parallel, the target frame
𝑠𝑇 and the offset 𝑠𝑇 −𝑠𝑡 are individually encoded and concatenated,
then perturbed by 𝑧𝑛𝑜𝑖𝑠𝑒 . This term captures the motion random-
ness in terms of completing the motion at the current time. The
randomness is time-varying, i.e. small when 𝑡 is close to 𝑇 as the
remaining motion is short, and bigger otherwise:

𝑧𝑛𝑜𝑖𝑠𝑒 = _𝑁 (0, 0.5) , _ = 𝑐𝑙𝑎𝑚𝑝

(
𝑇 − 𝑡 − 𝑡𝑧𝑒𝑟𝑜

𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑧𝑒𝑟𝑜

)
∈ (0, 1), (6)

where 𝑡𝑧𝑒𝑟𝑜 = 5 and 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 30 are parameters. So far, combining
encoded information, we have:

𝑧𝑡+1
ℎ

= Φ𝐿𝑆𝑇𝑀 (𝑐𝑡 , 𝑧𝑡
ℎ
),

𝑐𝑡 = (𝐸𝑠𝑡𝑦 (𝑘, 𝐸𝑠𝑡𝑎𝑡 (𝑠𝑡 )) + 𝑧𝑑𝑡 , ℎ
𝑡
𝑡𝑎𝑟𝑔𝑒𝑡 ),

ℎ𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = (𝐸𝑡𝑎𝑟 (𝑠𝑇 ), 𝐸𝑜 𝑓 𝑓 (𝑠𝑇 − 𝑠𝑡 )) + 𝑧𝑛𝑜𝑖𝑠𝑒 + 𝑧𝑑𝑡 ,

𝑧𝑑𝑡,2𝑖 = sin
(

𝑑𝑡

100002𝑖/𝑑

)
, 𝑧𝑑𝑡,2𝑖+1 = cos

(
𝑑𝑡

100002𝑖/𝑑

)
, (7)

where 𝐸𝑠𝑡𝑦 , 𝐸𝑠𝑡𝑎𝑡 , 𝐸𝑡𝑎𝑟 , 𝐸𝑜 𝑓 𝑓 , and Φ𝐿𝑆𝑇𝑀 are the style embedding,
state encoder, target encoder, offset encoder, and long short-term
memory network with cell state 𝑐𝑡 , respectively. 𝑑 represents the
dimension of 𝑧𝑑𝑡 and 𝑖 ∈ [0, ..., 𝑑/2] represents the dimension
index. The Φ𝐿𝑆𝑇𝑀 predicts the next state 𝑧𝑡+1

ℎ
which is used to



RSMT: Real-time Stylized Motion Transition for Characters SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

Target Encoder

Offset Encoder

State Encoder

𝒔𝑻 𝒔𝒕-
𝒛

LSTM Decoder

𝒑𝒕 𝟏

𝒔𝒕

𝒛
𝒛

𝒗𝒉𝒕 𝟏

Style Embedding

𝑴𝒔 Style Encoder

Style 
embedding

Linear

FiLM

ATN

ELU

ELU

Decoder

Linear

ELU

Linear

FiLM

ELU

ATN

ELU

Linear

ELU

Linear

𝒔𝑻

𝒑𝒕

𝒌

𝒌
𝒌

𝒉𝒕

Encoding Concatenation Prediction Decoding Network details

Figure 3: The motion sampler is divided into four stages: encoding, concatenation, prediction, and decoding. The gray boxes
represent the data and the blue ones represent network blocks. The merge of arrows represents vector concatenation.

predict ℎ𝑡+1 = {𝑧𝑡+1, 𝑝𝑡+1, 𝑣𝑡+1
ℎ

} = 𝐷 (𝑘, (𝑝𝑡 , 𝑧𝑡+1
ℎ

, ℎ𝑡𝑡𝑎𝑟𝑔𝑒𝑡 )), which
is further fed into the manifold model to sample the next frame.
Instead of predicting the next phase directly [Starke et al. 2022],
we predict an intermediate next phase 𝑝𝑡+1, and the amplitude
𝐴𝑡+1 and the frequency 𝐹 𝑡+1 separately. Then another intermediate
phase vector is computed as:

𝑝𝑡+1 = 𝐴𝑖+1 · (𝑅(\ ) · 𝑝𝑡 ), \ = Δ𝑡 · 2𝜋 · 𝐹 𝑡+1, (8)

where Δ𝑡 is the time step, 𝑅 is a 2D rotation matrix. Then we inter-
polate the angles of 𝑝𝑖+1 and 𝑝𝑖+1 with spherical linear interpolation
with weight 0.5, and linearly interpolate the amplitude with weight
0.5 for the final prediction 𝑝𝑡+1.

3.2.1 Losses. To train the sampler, we minimize 𝐿 = 𝐿𝑟𝑒𝑐 + 𝐿𝑙𝑎𝑠𝑡 +
+𝐿𝑓 𝑜𝑜𝑡 + 𝐿𝑝ℎ𝑎𝑠𝑒 where:

𝐿𝑟𝑒𝑐 =
1

𝐼𝑇𝑁𝐷

∑︁
| |𝑀𝑖 −𝑀′

𝑖 | |1, 𝐿𝑙𝑎𝑠𝑡 =
1

𝐼𝑁𝐷

∑︁
| |𝑠𝑇 − (𝑠𝑇 )′ | |1,

𝐿𝑝ℎ𝑎𝑠𝑒 =
1

𝐼𝑇𝑁𝑝

∑︁
( | |𝐴𝑡 −𝐴𝑡 | |22 + ||𝐹 𝑡 − 𝐹 𝑡 | |22)

+ 1
2𝐼𝑇𝑁𝑝

∑︁
( | |𝑝𝑡 − 𝑝𝑡 | |22 + ||𝑝𝑡 − 𝑝𝑡 | |22), (9)

where 𝐼 , 𝑇 , 𝑁 , 𝐷 , and 𝑁𝑝 are the number of data samples, the
motion length, the number of joints, the degrees of freedom per
joint, and the number of phase channels. 𝐿𝑟𝑒𝑐 is the reconstruction
loss of motion. 𝐿𝑙𝑎𝑠𝑡 emphasizes the predicted last frame should
be the same as the target frame. 𝐿𝑓 𝑜𝑜𝑡 is defined in Equation 4,
penalizing the foot skating artifacts. 𝐿𝑝ℎ𝑎𝑠𝑒 is the reconstruction
loss of the phase, where 𝐹 𝑡 is calculated as the difference between
two consecutive signed shift:

𝐹 𝑡


𝑆𝑡 − 𝑆𝑡−1, 𝑆𝑡 − 𝑆𝑡−1 ∈ [−0.5, 0.5]
𝑆𝑡 − 𝑆𝑡−1 + 1, 𝑆𝑡 − 𝑆𝑡−1 ∈ [−1,−0.5) .
𝑆𝑡 − 𝑆𝑡−1 − 1, 𝑆𝑡 − 𝑆𝑡−1 ∈ (0.5, 1.0]

(10)

4 IMPLEMENTATION
Data Formatting. We use the 100STYLE motion dataset [Mason

et al. 2022] and retarget the motions to a skeleton with 23 joints by
removing all the wrist and thumb joints. Further, we subsample the
motion sequences to 30 fps and augment them by mirroring and
temporal random cropping [Jang et al. 2022].We use 120-frame clips
for𝑀𝑠 and 60-frame clips with 20-frame overlapping for the motion

manifold. We orient the motions so that first frame faces toward the
X-axis [Holden et al. 2016]. However, instead of using features in
local space [Li et al. 2022] that is invariant to the global translation
and rotation of the motion, our experiments show that representing
the starting and target pose in the same coordinate system improves
the performance. So we use the global joint orientation by rotations
along a forward and up vector r ∈ R6 [Zhang et al. 2018]. Overall,
a motion 𝑀 ∈ R23×12×60 includes the global joint position (R3),
velocity (R3), and rotation (R6). The style motion𝑀𝑠 ∈ R23×12×120
is chosen at random from a set of data with the same style as𝑀 .

Training. We chose a 25-frame window at random from the 60-
frame clip for one training step instead of using the whole sequence,
which significantly speeds up the training convergence.

We use AmSgrad with parameters (𝛽1 = 0.5, 𝛽2 = 0.9) and a
learning rate 1𝑒 − 3. To train the sampler, we shuffle all the style
sequences randomly. To ensure that our model is robust to different
time durations, we randomly sample a sequence whose length is 20
in the beginning and increases linearly to 40 in each epoch, similar
to [Harvey et al. 2020]. We employ AMSGrad with the same setting
as before, with a weight decay 1𝑒 − 4 for training style encoder
to avoid overfitting and 0 for other modules. More information is
available in the supplementary material (SM).

5 EXPERIMENTS AND RESULTS
We conduct our experiments on a PC with an Nvidia RTX 3090
graphics card, with an Intel I7-11700K CPU and 32G memory. Our
method takes on average 1.7 ms to synthesize one frame.

Data split. 100STYLE contains 100 styles. Since our manifold and
sampler can be trained/tested on different datasets, we set up two
testing protocols: style-overlapping and style-no-overlapping. We
use the last 10 styles as the style-no-overlapping testing data, and
use 10% of each style in the first 90 styles as the style-overlapping
testing data. The remaining is the training data.

5.1 Metrics
We employ three sets of metrics to evaluate the motion quality, the
synthesis controllability and the diversity, under various control sig-
nals. We first test our model in reconstructing the missing frames of
variable lengths (10 frames, 20 frames, and 40 frames) and measure
the reconstruction accuracy. Then we change the time duration and
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the locations of the target frames (spatial/temporal control), which
requires the character to reach the target via different motions. The
locations of the target frame and the time duration are changed by:
(𝑥𝑇 )′ = 𝑥0+𝑑 · (𝑥𝑇 −𝑥0) and 𝑡 ′

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠
= 𝑑𝑡 ·𝑡𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , where 𝑥𝑇 is

the location of the target frame projected on the ground, 𝑡𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠
is the time durations of the missing frames. 𝑑 and 𝑑𝑡 are the ratio
parameters. We set 𝑑 = 2 and 𝑑 = −1 to place the target frame
before and after the starting frame. We set 𝑑𝑡 = 2 and 𝑑𝑡 = 0.5 to
slow down and speed up the motion.

We measure controllability using three different metrics. When
infilling motion, we use the averaged L2 distance of global joint
positions and the Normalized Power Spectrum Similarity (NPSS) in
the joint angle space to calculate reconstruction accuracy [Harvey
et al. 2020]. When the ground truth for spatial/temporal control is
unavailable, we measure controllability by determining whether the
predicted last frame matches the target. In both cases, we measure
foot skating [Zhang et al. 2018] using the averaged foot velocity
𝑣 𝑓 when the foot height ℎ is within a threshold 𝐻 = 2.5: 𝐿𝑓 =

𝑣 𝑓 · 𝑐𝑙𝑎𝑚𝑝 (2 − 2ℎ/𝐻 , 0, 1).
To evaluate the diversity, we generate ten samples for each com-

bination of a motion sequence and a style sequence, then calculate
the L2 distance between the global joint positions of any two se-
quences.

Quantitatively measuring style is hard. A possible solution is the
Fréchet Motion Distance (FMD) [Jang et al. 2022; Yin et al. 2023],
which compares the distributions of the generated sequences and
the dataset. However, the distribution under the spatial/temporal
control shifts the distribution significantly. So we only use FMD
when the time duration and target location do not change, in which
the style similarity is highly related to the distribution similarity.
The results of spatial/temporal control are shown in the video.

To compute the FMD, we first train a style classifier by modifying
the style encoder in [Jang et al. 2022] by adding a pooling layer and
a softmax layer. The pooling layer removes the temporal and the
joint axis of the output from the style encoder. Then the softmax
layer transforms the latent to the one-hot embedding of the style.
The FMD is then calculated between the generated sequences and
the ground truth in the latent space after the pooling layer.

5.2 Manifold Generalization
One advantage of our model is that the manifold and sampler do
not have to be trained on the same dataset, which makes it possible
to train the manifold on a general dataset with more data samples
and train the sampler on a dedicated style dataset. To validate this,
we further split the training dataset into two subsets named A (the
first 46 styles) and B (the following 44 styles) to ensure there is no
style overlapping. We name the testing dataset C (the last 10 styles).

We show exhaustive experiments in Tab. 2. Both the reconstruc-
tion and the NPSS are better when the sampler is trained and tested
on the same dataset, understandably. Similar observation can be
made in foot skating except that AA on B is better than AB on
B but by a small margin. Overall, these metrics are not severely
affected regarding the dataset for manifold training, verifying that
manifold, which being high-quality, can be trained as a somewhat
independent motion source, which gives great flexibility in training

Table 2: Manifold and Sampler trained on different data: "BA
on C" represents the manifold trained on B and the sampler
trained on A and the full model tested on C. Note there is no
style overlap among A, B, and C. Fuller results are in the SM.

L2 norm of global position
Frames 10 20 40

AA on A (BA on A) 0.59 (0.64) 0.76 (0.80) 1.31 (1.38)
BB on A (AB on A) 0.78 (0.80) 1.15 (1.19) 1.85 (1.92)
AA on B (BA on B) 0.63 (0.62) 0.94 (0.89) 1.63 (1.53)
BB on B (AB on B) 0.53 (0.58) 0.68 (0.74) 1.11 (1.23)
AA on C (BA on C) 0.80 (0.82) 1.21 (1.18) 1.95 (1.97)
BB on C (AB on C) 0.97 (0.98) 1.56 (1.51) 2.53 (2.44)

100×NPSS
AA on A (BA on A) 0.435 (0.502) 1.640 (1.828) 9.850 (9.576)
BB on A (AB on A) 0.518 (0.534) 2.195 (2.141) 13.408 (11.461)
AA on B (BA on B) 0.549 (0.612) 2.838 (2.395) 20.981 (18.043)
BB on B (AB on B) 0.380 (0.504) 1.442 (1.922) 10.067 (12.387)
AA on C (BA on C) 0.634 (0.743) 3.798 (4.057) 16.784 (18.372)
BB on C (AB on C) 0.872 (1.032) 5.046 (5.541) 26.806 (19.864)

Foot skate

Ground Truth on A 0.161 0.167 0.167
AA on A (BA on A) 0.171 (0.202) 0.197 (0.222) 0.297 (0.321)
BB on A (AB on A) 0.217 (0.199) 0.250 (0.230) 0.353 (0.340)
Ground Truth on B 0.184 0.181 0.186
AA on B (BA on B) 0.211 (0.256) 0.218 (0.232) 0.324 (0.346)
BB on B (AB on B) 0.213 (0.221) 0.231 (0.249) 0.309 (0.343)
Ground Truth on C 0.271 0.269 0.255
AA on C (BA on C) 0.196 (0.210) 0.264 (0.241) 0.336 (0.302)
BB on C (AB on C) 0.235 (0.218) 0.276 (0.279) 0.345 (0.358)

Diversity

AA on A (BA on A) 0.869 (0.908) 2.172 (2.210) 7.194 (7.423)
BB on A (AB on A) 0.899 (0.938) 2.283 ( 2.303) 7.446 (7.587)

AA on B (BA on B) 0.856 (0.892) 2.189 (2.191) 7.471 ( 7.612)
BB on B (AB on B) 0.834 (0.875) 2.049 (2.096) 6.738 (6.989)

and reduces the need to capture large amounts of dedicated style
motions.

In terms of diversity, a higher diversity is achieved in general
when the manifold and the sampler are trained on different data.
It is challenging to reproduce the original motion when sampling
from another manifold, which drives the sampler to approximate it
by stochastic sampling, essentially increasing the diversity. Besides,
compared with the manifold, the sampler has a stronger influence
on diversity, especially when trained and tested on different data.
The diversity comes from the fact that the character is forced to
explore more poses to reach the target.

FMD (Tab. 3) measures the distributional similarity between
our model and the ground truth. Again, the sampler has a bigger
influence, e.g. both AA and BA are better than AB on A. Further,
although BA performs slightly worse than AA on A, the style effects
do not differ much in visual observations. It is reasonable because
the motion sampled from manifold A has a higher probability of
having a similar distribution as dataset A. Similar results (in SM)
are also observed on dataset C.

In terms of the controllability, the metrics on the last frame is
mainly affected by the manifold, as shown in Tab. 3. The sampling
from manifold A achieves better synthesis controllability in dataset
A than from manifold B. However, there is no significant visual
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Table 3: Manifold and Sampler trained on different data. The
table shows FMD of 40 frames and the L2 norm of global
position between the last predicted frame and the target
frame.

FMD (40 frames)
Dataset A BA AA AB BB

16.303 10.359 50.448 58.154
Dataset B BA AA AB BB

45.898 62.092 14.964 11.431
Dataset C BA AA AB BB

70.655 74.404 105.360 102.639

L2 norm of global position of last frame

Conditions dt=2, d=1 dt=0.5, d=1 dt=1, d=2 dt=1, d=-1

AA on A (AB on A) 0.38 (0.37) 0.42 (0.42) 0.39 (0.40) 0.39 (0.37)
BB on A (BA on A) 0.43 (0.45) 0.48 (0.48) 0.46 (0.43) 0.45 (0.44)
AA on B (AB on B) 0.40 (0.37) 0.43 (0.40) 0.39 (0.37) 0.39 (0.36)
BB on B (BA on B) 0.33 (0.35) 0.36 (0.38) 0.33 (0.33) 0.32 (0.34)

difference between them in most cases. For some poses that differ
from the neutral pose in dataset A, sampling frommanifold B cannot
reconstruct the pose accurately, resulting in a gap in the target
frame. Training the manifold on a more diverse dataset alleviates
this problem. Overall, the manifold affects the controllability and
mildly influences the quality while the sampler mainly influence
the style and the generalization.

5.3 Comparisons
We compare our model with two in-between models: CVAE [Tang
et al. 2022] and RTN [Harvey et al. 2020]. Results are shown in Tab. 4.
Besides, for a fair comparison, an additional experiment was carried
out in which we replaced the CVAE’s sampler with our sampler so
that it could accept the style code as input. The manifold design
distinguishes the two methods. The comparison demonstrates that
the phase manifold is critical for preserving the styled motion,
as discussed in the SM’s manifold discussion. Furthermore, we
compare our method with and without the attention block, which
is also detailed in the SM. From reconstruction and NPSS, CVAE
performs overall slightly better than ours and both are better than
RTN. Since the motion sampling of CVAE is strictly constrained
within a latent Gaussian distribution, its NPSS is slightly better than
ours while we achieves better reconstruction in general. However,
when it comes to foot skating and motion diversity, our method
undoubtedly outperforms all baseline methods. We argue that in
styled motion generation, the latter two metrics are more important
as the foot skating is a key indicator for any motion while the
diversity serves the generation task better.

Further, without imposing style explicitly, RTN and CVAE simply
learn the most likely motion given the past context and the target
frame from the datasets. Sometimes they can generate motion with
styles but only when there is a style that is dinstinctive from other
styles without ambiguity in the data. When there are several similar
styles, they tend to mix them incorrectly, which can be noticed in
the visual comparison in the video. In addition, when the motion
differs from the distribution of the training set by changing the
time duration or locations, RTN and CVAE cannot generate vivid
styled motions or generate visible artifacts. Please refer to Figs.
4, 5 in the figures only pages, as well as the accompanying video.

Table 4: Comparison on reconstruction, foot skating, and
diversity metrics.

L2 norm of global position 100×NPSS
Frames 10 20 40 10 20 40

RTN 0.663 0.847 1.365 0.387 1.539 8.794
CVAE 0.506 0.692 1.224 0.321 1.353 8.108
Our method 0.525 0.680 1.148 0.384 1.507 9.659

Foot skate Diversity

RTN 0.343 0.339 0.474 0.678 1.956 6.172
CVAE 0.217 0.210 0.284 0.867 1.791 5.560
Our method 0.174 0.194 0.272 0.910 2.017 6.683

Table 5: Comparison on the L2 norm of global position of last
predicted frame and the target, foot skating metrics, under
the conditions that change the time duration and locations
of target frame of 40 missing frames.

L2 norm of global position of the last frame
Conditions dt=2, d=1 dt=0.5, d=1 dt=1, d=2 dt=1, d=-1
RTN 0.688 0.599 0.751 0.599
CVAE 0.908 0.781 0.746 0.811
Our method 0.292 0.358 0.302 0.303

Foot skate
RTN 0.498 1.294 1.181 0.795
CVAE 0.208 0.995 0.875 0.664
Our method 0.307 1.018 0.592 0.557

Alternatively, in the absence of style specification, our method
achieves similar high-quality results compared to CVAE, and both
methods outperform RTN by motion quality, especially for the
conditions that the time duration and the locations of the target
frames are changed.

Varying transition duration. We also significantly speed up and
slow down the velocity. Speeding up dictates that the character
needs to make faster steps or larger strides to reach the target. In
this situation, CVAE and our method adopt the same phase as the
original sequence but with higher velocity. In contrast, RTN drifts
to the target. During slowing down, CVAE generates motions where
the character stays in the middle and waits without performing
the stylized motion, while our method also slows down but still
performs the styled motion or keeps moving but turns slightly if
it moves to a location that is slightly different from the target, e.g.
overshooting. The reason for such motions is that a longer duration
drives more cycles in the the phase manifold in our model, so that it
avoids simply drifting/idling in the middle like the motions by RTN
and CVAE. More visual comparisons can be found in the video.

Different target locations. To test drastic spatial control, we run
two experiments in which the target location is set to be further
away in front of and behind the character, respectively. When the
target is further away, the CVAE fills the gap with more small
footsteps or fewer bigger ones. Our method uses the bigger steps
to fill the gap while preserving the same phase as the original
sequence. However, RTN usually performs at the same pace as the
ground truth but fills the distance gap by drifting. When the target
is behind the character, which is drastically different from the data,
the character must change the velocity direction during the motion,
causing RTN to easily drift. But our method and CVAE keep foot
contact with the ground.
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5.4 Generation on Unseen styles
Compared to earlier motion in-between methods [Harvey et al.
2020; Tang et al. 2022], which cannot generalize to unseen styles, we
have shown our method can generalize well in style-no-overlapping
results (Tab. 2 and Tab. 3). In addition, the design of ourmodelmakes
fine-tune on limited data easy, so we do not have to blindly extrapo-
late on new styles. This is important in application as existing data
might not give enough samples in the style space [Ji et al. 2021]
and it is highly desirable if only a few sequences of a new style are
needed for models to generate diversified motions with that style.

To validate this, we fine-tune the style encoder and the linear lay-
ers of the FiLM and ATN blocks while keeping all other parameters
fixed.We choose the "TwoFootJump" style in the testing dataset as it
is significantly different from the training set. The "TwoFootJump"
data consists of 8 types. We sample merely one sequence per type
and augment the sequences by mirroring and temporal random
cropping, leading to 24 sequences for fine-tuning. After fine-tuning,
the character can reach the target by jumping rather than walking
as before fine-tuning, which captures the new style perfectly. The
accompanying video shows the visual results.

6 LIMITATIONS, CONCLUSIONS AND FUTURE
WORK

One limitation is ourmodel still tends to generate the sequences that
have similar distribution as the training data, similar to other data-
driven methods. When the specified style severely contradicts with
the space-time constraints, our model favors the control rather than
the style, especially if the remaining time is not long enough to show
that style. For example, the character should kick strongly to deliver
the style, but it might raise its leg slightly if the remaining time is
insufficient and the target pose does not raise the leg. However, we
argue in most application scenarios, control is more important.

In summary, we have proposed a novel learning framework for
styled real-time in-between motion generation (RSMT), consisting
of two critical, independent components: a general motion mani-
fold acting as a high-quality motion source and a motion sampler
generating motions with user-specified style and control signals.
Exhaustive evaluation proves that our model has a strong gener-
alization capacity in motion control and stylization. Our method
generates high quality styled motions and is general to unseen
control signals. It also outperforms state-of-the-art methods. One
future direction is to enable style transitions before reaching the
target frame, which requires tunable weighting on control and
varying styles simultaneously on the fly.
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Source RTN

CVAE Our method

Figure 4: The target location is set to further away in front of the starting frame. Our method performs the desired stylized
motion with bigger footsteps. Comparatively, the character synthesized by RTN and CVAE reaches the target via neutral
walking. The yellow boxes highlight the most stylized pose.

Source RTN

CVAE
Our method

CVAE Our method

Figure 5: We set the time duration twice as long as the original (i.e. requiring a slowing down motion) and plot the key poses
for easy viewing. RTN and CVAE remain in the middle and wait without performing the stylized motion (yellow box), whereas
our method continues performing the stylized motion.
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